
hookbox Documentation
Release 0.3.4

Michael Carter

February 23, 2013

CONTENTS

1 Introduction 3
1.1 Overview . 3
1.2 Terminology . 4
1.3 Common Patterns . 5
1.4 Installation . 6
1.5 Github . 7

2 Tutorial 9

3 Channels 11
3.1 Overview . 11
3.2 Getting Data out of a Channel . 11
3.3 Putting Data into Channels . 12
3.4 Channel Properties . 12

4 Javascript API 13
4.1 Connecting . 13
4.2 Disconnecting . 13
4.3 Subscribing to Channels . 13
4.4 Interacting with Channels . 14

5 Webhooks 17
5.1 publish . 17
5.2 message . 18

6 Web/HTTP Interface 19
6.1 publish . 19
6.2 subscribe . 19
6.3 unsubscribe . 20
6.4 message . 20
6.5 get_channel_info . 21
6.6 set_channel_options . 22
6.7 create_channel . 23
6.8 destroy_channel . 23
6.9 state_set_key . 23
6.10 state_delete_key . 24
6.11 set_config . 24
6.12 get_user_info . 25
6.13 set_user_options . 25
6.14 get_server_info . 26

i

7 JSON Rest Interface 27

8 Configuration 29
8.1 Basic Options . 29
8.2 Webhook Callback Options . 29
8.3 Extended Callback Options . 30
8.4 API Options . 31
8.5 Admin Options . 31

9 Deployment 33

ii

hookbox Documentation, Release 0.3.4

Contents:

CONTENTS 1

hookbox Documentation, Release 0.3.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Overview

Hookbox’s purpose is to ease the development of real-time web applications, with an emphasis on tight integration
with existing web technology. Put simply, Hookbox is a web-enabled message queue. Browers may directly connect to
Hookbox, subscribe to named channels, and publish and receive messages on those channels in real-time. An external
application (typically the web application itself) may also publish messages to channels by means of the Hookbox
REST interface. All authentication and authorization is performed by an external web application via designated
“webhook” callbacks.

3

hookbox Documentation, Release 0.3.4

Any time a user connects or operates on a channel, (subscribe, publish, unsubscribe) Hookbox makes an http request
to the web application for authorization for the action. Once subscribed to a channel, the user’s browser will receive
real-time events that originate either in another browser via the javascript api, or from the web application via the
REST api.

They key insight is that all application development with hookbox Happens either in javascript, or in the native lan-
guage of the web application itself (e.g. PHP.)

1.2 Terminology

Throughout this documentation, we throw various terms around like you should know what we’re talking about. This
is probably not always the case, so this section includes a list of terms that have caused trouble for previous readers.

• Application, Web Application, Web app: An HTTP based application; commonly written with PHP,
Django, Ruby on Rails, ASP.NET, and Java servlets.

• Browser, Client: Firefox, IE, Chrome, Safari, Opera, or some variant.

4 Chapter 1. Introduction

hookbox Documentation, Release 0.3.4

• Webhook, HTTP callback: A HTTP request made from Hookbox to the Web app when various events
occur on the Hookbox server.

1.3 Common Patterns

Hookbox is built around the concept of named Channels which are extremely flexible. These channels can be config-
ured by the web application to provide many features out of the box. Here are a few typical patterns:

1.3.1 Real-time graph (time series)

When a user connects to a web page with a real-time, time series graph, that user needs access to the last N data points
on the graph. After that, the user needs updates on an interval. Lets say that we want to build a graph that shows a
new data point every second, and always shows the last 30 seconds of data. Firstly, we enable a history on the channel
with:

"history_size": 30

This will cause the channel to send any new subscribers the last 30 data points immediately when they subscribe.

Next we need to put data into the channel on an interval. There are a number of ways we
could do this, for instance we have access to the REST API so we could set a cron job that calls
http://HOOKBOX_HOST:HOOKBOX_PORT/rest/publish every second. But this method is clumsy and imposes
additional deployment constraints on our application. Instead, we can use the channel polling feature to pop-
ulate our channel with data from a remote url every second. Assuming we had an application hosted at
http://example.org/cpu_usage which returns a single number representing our target data, we can set polling up like
so:

"polling": {
"url": "http://example.org/cpu_usage",
"interval": 1.0,
"mode": "simple"

}

Now our channel will automatically poll our application for new data points every second, and then rebroadcast that
too all subscribers.

Putting it all together, our actual implementation would consist of just a few pieces.

1. A create_channel callback which returns the polling and history_size options. This is just a url in the web
application which hookbox will issue and HTTP request to when someone first attempts to subscribe to the
channel and it needs to be created.

2. A connect callback which returns [true, { "name": "$username" }]. This is again a url in the
web application that hookbox will call when someon tries to connect. The value of $username would just be a
random string in this case.

3. A subscribe callback which returns [true, {}] so that users can subscribe to the channel

4. A publish callback which returns [false, {}] so that users cannot publish to the channel

5. an html with javascript that connects to hookbox, graphs the initial history, and graphs all new data points as
they come in.

If you’re interested in seeing a completed version of this type of application then take a look at the PHP Real-time
Time Series Graph on github.

1.3. Common Patterns 5

http://HOOKBOX_HOST:HOOKBOX_PORT/rest/publish
http://example.org/cpu_usage
http://github.com/hookbox/hookbox/tree/master/examples/php_graph
http://github.com/hookbox/hookbox/tree/master/examples/php_graph

hookbox Documentation, Release 0.3.4

1.3.2 Chat Room (with presence)

A chat room should contain a history, and presence information (We should see who is in the room, and receives
notifications when users join or leave.) Also, its nice to have the server send your own chat messages back to you so
you can be sure they went through, so we will turn on reflection. All we need to do is implement a create_channel
callback that sets this up by returning:

[true, { "history_size": 20, "presenceful": true, "reflective": true }]

In some cases it is nice to persist all chat messages, joins, and leaves, so our web application needs to write these
events to the database within the publish, subscribe, and unsubscribe callbacks.

If we have that information stored in a database, then we can fetch it out to pre-populate the history of the channel
from the last conversation by returning the a “history” setting as well. Typically a history setting might look like this:

"history": [
[

"UNSUBSCRIBE",
{

"user": "mcarter"
}

],
[

"PUBLISH",
{

"payload": "Anyone there?",
"user": "mcarter"

}
],
[

"SUBSCRIBE",
{

"user": "mcarter"
}

]
]

1.3.3 Card Game

TODO

1.4 Installation

Hookbox is written in python and depends on setuptools for installation. The fastest way to install hookbox is to type:

easy_install hookbox

If you are missing python or setuptools, please refer to the following links:

• install python

• install setuptools

To confirm your installation succeeded, type:

6 Chapter 1. Introduction

http://python.org/download
http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions

hookbox Documentation, Release 0.3.4

hookbox --help

1.5 Github

The development version of Hookbox is located on github:

• http://github.com/hookbox/hookbox

You can get a copy of the latest source by cloning the repository:

git clone git://github.com/hookbox/hookbox.git

To install hookbox from source, ensure you have python and setuptools, then run:

cd hookbox/hookbox
python setup.py install

1.5. Github 7

http://github.com/hookbox/hookbox

hookbox Documentation, Release 0.3.4

8 Chapter 1. Introduction

CHAPTER

TWO

TUTORIAL

9

hookbox Documentation, Release 0.3.4

10 Chapter 2. Tutorial

CHAPTER

THREE

CHANNELS

3.1 Overview

Hookbox is built around the concept channels which can be used as an abstraction for routing real-time communication
between browers and your web application. These channels have many options, making them suitable for a multitude
of basic types of applications. You need to consider the features needed by the real-time portion of your application,
and adjust the channel options appropriately. You can read about some Common Patterns to find a good starting point
for your application.

Ultimately, your web application has complete control over these channels. A user may perform three actions on
a channel, subscribing, publishing, or unsubscribing. Whenever a user attempts to perform an action on a channel,
Hookbox will make a Webhook call back to your application to obtain permission for the action by that user, or simply
to notify your web application that the action took place.

The application may itself perform any of these actions on a channel by using the REST API; it may perform any
action on behalf of any user, and it can even publish with arbitrary usernames. The application may additionally use
the REST API to alter a channel’s state or options at any time.

Finally, the web application may sometimes perform actions on channels on behalf of a particular user when that
user causes a webhook callback. For instance, a user might subscribe to the channel ‘foo’, which would result in
a subscribe webhook to be issued. The web application may respond with the auto_subscribe directive in
order to subscribe the user to another channel, such as ‘bar’.

You can think of channels as three parts:

1. Unique name

2. List of actively connected/subscribed users

3. History/state

And you can think of the operations you can perform on a channel in three categories:

1. Putting data into a channel

2. Getting data out of a channel

3. Altering channel subscriptions

3.2 Getting Data out of a Channel

The most common way to get data out of a channel is to simply subscribe with the Javascript API. This method allows
javascript code to attach a publish callback which will be invoked whenever a new message is published to the channel.

11

hookbox Documentation, Release 0.3.4

3.3 Putting Data into Channels

3.4 Channel Properties

• history_size: the maximum number of entries in the channel history.

• history_duration: the maximum seconds of duration of life in the channel history.

• history: A list of events that have previously occurred on this channel. They may be Subscribe, Unsubscribe,
or Publish events.

• history_publish_only: A Boolean to indicate that only Publish events are in the history.

• name: The name of the channel.

• presenceful: A Boolean indicating whether presence information is shared with channel subscribers.

• moderated: If true, any action will cause a Webhook callback.

• moderated_publish: If true, Publish will cause a Webhook callback.

• moderated_subscribe: If true, Subscribe will cause a Webhook callback.

• moderated_unsubscribe: If true, Unsubscribe will cause a Webhook callback.

• reflective: messages sent to this channel will also be sent back to the sender

• server_presenceful: Needs to know about server presence

• server_user_presence: A list of ,

• anonymous: messages sent to this channel will not contain user information

• polling: A dictionary containing the values mode: “”, interval: 5.0, url: “”, form: {}, originator:
“”

• state: {}

• TODO: etc.

12 Chapter 3. Channels

CHAPTER

FOUR

JAVASCRIPT API

The Hookbox javascript api is contained completely in the hookbox.js file that comes with the Hookbox daemon. The
file is served by hookbox at http://HOOKBOX_HOST:HOOKBOX_PORT/static/hookbox.js, but you may serve the
file from any location and it will still work.

4.1 Connecting

To connect to hookbox you need to provide the url of the hookbox server, with a “/csp” as the path. For example, if
hookbox server is running on host “localhost” and port 8001, (the default) then the to connect:

var conn = hookbox.connect(’http://localhost:8001/csp’)

Once the connection has been successfully established, the onopen callback will be called. You can attach your own
callback to catch:

conn.onOpen = function() { alert("connection established!"); }

If there was an error when connecting the onError callback will be invoked:

conn.onError = function(err) { alert("connection failed: " + err.msg); }

4.2 Disconnecting

To disconnect from hookbox use the conn.disconnect method:

conn.disconnect();

NOTE: This method will often not result in a successful disconnect if called in the unload handler for the web page,
in which case the user won’t be disconnected until they timeout (after about 60 seconds)

4.3 Subscribing to Channels

As soon as you have a connection object after calling hookbox.connect, you are free to make calls to conn.subscribe,
even before the connection is established. These calls will be buffered until after the onOpen event is fired.

To subscribe to a channel use the conn.subscribe function:

conn.subscribe("my_channel_name");

13

http://HOOKBOX_HOST:HOOKBOX_PORT/static/hookbox.js

hookbox Documentation, Release 0.3.4

There is no returned object when calling conn.subscribe; rather, a subscription object is passed to you through the
onSubscribed callback once the subscription is successful.

var subscription = null;
conn.onSubscribed = function(channelName, _subscription, args) {

subscription = _subscription;
}

Its important to understand that the onSubscribed callback can be called even if you’ve never made a call to
subscribe. This might be because the web application decided to auto_subscribe you to some channel, or it
could be because the user is already logged in and subscribed to multiple channels, though in a different browser
window or tab. If the subscribe call is made successfully in another tab, then this tab’s Hookbox connection object
will also issue an onSubscribed callback.

4.4 Interacting with Channels

Once you have a subsription object, you are able to inspect the channel’s attributes, publish to the channel, and receive
publishes from other subscribers in the channel.

4.4.1 Channel Attributes

If the channel is set to have history_size > 0, then you will have access to history information for that channel:

>>> subscription.history
[["PUBLISH", Object { user="mcarter", payload="greetings!"}], ["SUBSCRIBE", Object { user="mcarter" }] ...]

All attributes are read only. The complete list:

• historySize: the length of the history for the channel.

• history: a list of the last N elements where N is the history_size attribute of the channel

• state: arbitrary (json) data set on the channel by the web application. This attribute updates automatically
when the web application changes it, and an onState callback is issued on the subscription.

• presenceful: boolean that signifies rather this channel relays presence information

• presence: a list of users subscribed to the channel. This is always empty if presenceful is false.

• reflective: boolean signifying if this channel reflects publish frames back to the connection that orignated
them.

4.4.2 Presence Information

Note in the above example that one of the frames in the history is SUBSCRIBE. The channel will only relay subscribe
and unsubscribe frames to the browser if presenceful = true is set on the channel by the web application. If it is
set, then the subscription object will provide access to a list of users currently subscribed to this channel:

>>> subscription.presence
["mgh", "mcarter", "desmaj"]

Whenever a user subscribes or unsubscribes from the channel you will receive an onSubscribe or
onUnsubscribe callback from the subscription, and the presence attribute will be updated.

14 Chapter 4. Javascript API

hookbox Documentation, Release 0.3.4

subscription.onSubscribe = function(frame) {
// the user is now in our presence list
assertTrue(subscription.presence.indexOf(frame.user) != -1);
alert("user: " + frame.user + " has subscribed!");

}

subscription.onUnsubscribe = function(frame) {
// the user is no longer in our presence list
assertTrue(subscription.presence.indexOf(frame.user) == -1);
alert("user: " + frame.user + " has unsubscribed!");

}

4.4.3 Publishing

Perhaps the most important part of interacting with channels is publishing data receiving published data. You may
publish data by calling the subscription.publish method:

subscription.publish(42);
subscription.publish({foo: "bar"});
subscription.publish(null);
subscription.publish([1,2,3, {a: [4,5,6] });

As you can see, any native javascript object that can be transported as JSON is legal.

Whenever data is published to the channel, the onPublish callback on the subscription will be called. If the
reflective attribute is set on the channel by the web application, then your own calls to publish will cause an
onPublish callback as well.

subscription.onPublish = function(frame) {
alert(frame.user + " said: " + frame.payload);

}

Remember, frame.payload can be any javascript object that can be represented as JSON.

4.4.4 State

It sometimes makes sense for the web application to stash some additional state information on the channel either by
setting it in a webhook callback response, or using the rest api. In javascript, the subscription object maintains the
state attribute and issues onState callbacks whenever this attribute is modified. The state cannot be modified by the
client; it is unidirectional only. The state attribute is always a valid json object {}.

subscription.onState = function(frame) {
var updates = frame.updates; // object with the new keys/values and

// modified keys/values

var deletes = frame.deletes; // list containing all deleted keys.

// No need to compute the state from the updates and deletes, its done
// for you and stored on subscription.state
alert(’the name state is: ’ + JSON.stringify(subscription.state));

}

4.4. Interacting with Channels 15

hookbox Documentation, Release 0.3.4

4.4.5 Unsubscribing

You can use the javascript client to request that the user be unsubscribed from a channel with
the subscription.cancel method. When the subscription has been successfully canceled, the
conn.onUnsubscribed will be issued. Keep in mind that the web app may override this request and not allow
the user to be unsubscribed and so the onUnsubscribed callback will not be issued.

subscription = conn.subscribe(’foo.bar.baz’)
...
conn.onUnsubscribed = function(subscription, frame) {

alert(’successfully unsubscribed from: ’ + subscription.channelName);
}

subscription.cancel();

16 Chapter 4. Javascript API

CHAPTER

FIVE

WEBHOOKS

5.1 publish

Send a message to all users subscribed to a channel.

Webhook Form Variables:

• channel_name: The name of the channel the message is being published to.

• payload: The json payload to send to all users subscribed to the channel.

Webhook post includes sender cookies.

Returns json:

[success (boolean) , details (object)]

Optional Webhook return details:

• override_payload: A new payload that will be published instead of the original payload.

• only_to_sender: If true, the message will only be published to the sender instead of all the users subscribed
the channel.

• error: If success is false, error text to return to sender.

Example:

Client Calls:

connection.publish("channel-1", { title: "a message", body: "some text" });

Webhook Called With:

{ channel_name: "channel-1", payload: { title: "a message", body: "some text" } }

Webhook replies:

[true, { }]

And the following frame is published all subscribers to the channel ‘channel-1’:

{ channel_name: "channel-1", "payload": { title: "a message", body: "some text" } }

17

hookbox Documentation, Release 0.3.4

5.2 message

Send a private message to a user.

Webhook Form Variables:

• sender: The user name of the sending user.

• recipient: The user name of the receiving user.

• recipient_exists: True if the recipient name is that of a connected user, false otherwise.

• payload: The json payload to send to the receiving user.

Webhook post includes sender cookies.

Returns json:

[success (boolean) , details (object)]

Optional Webhook return details:

• override_payload: A new payload that will be sent instead of the original payload.

• override_recipient_name: The name of a user to send the message to instead of the original reciepient.

Example:

Client Calls:

connection.message("mcarter", { title: "a message", body: "some text" });

Webhook Called With:

{ sender: "some_user", recipient: "mcarter", payload: { title: "a message", body: "some text" } }

Webhook replies:

[true, { override_payload: { title: "a new title", body: "some text" } }]

And the following frame is published to the user ‘mcarter’:

{ sender: "some_user", recipient: "mcarter", "payload": { title: "a new title", body: "some text" } }

18 Chapter 5. Webhooks

CHAPTER

SIX

WEB/HTTP INTERFACE

6.1 publish

Publish a message to a channel.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

• payload: The json payload to publish

Optional Form Variables:

• originator: The name of the user who will appear to do the publish

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/publish?security_token=yo&channel_name=testing&payload=[1, 2, "foo"]&originator=dictator

Server Replies:

[true, {}]

And the following frame is published to channel ‘testing’:

{ "user": dictator, "payload": [1, 2, "foo"] }

6.2 subscribe

Add a user to a channel.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

• name: The name of the target user.

19

hookbox Documentation, Release 0.3.4

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/subscribe?security_token=yo&channel_name=testing&user=mcarter

Server Replies:

[true, {}]

And the user “mcarter” is subscribed to the channel “testing”.

6.3 unsubscribe

Remove a user from a channel.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

• name: The name of the target user.

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/unsubscribe?security_token=yo&channel_name=testing&user=mcarter

Server Replies:

[true, {}]

And the user “mcarter” is unsubscribed from the channel “testing”.

6.4 message

Publish a message to a user.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• sender_name: The user name of the message sender.

• recipient_name: The user name of the message recipient.

• payload: The json payload to send

Returns json:

20 Chapter 6. Web/HTTP Interface

hookbox Documentation, Release 0.3.4

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/message?security_token=yo&sender_name=bob&recipient_name=joe&payload=[1, 2, "foo"]

Server Replies:

[true, {}]

And the following message frame is sent to user ‘joe’:

{ "sender": "bob", "recipient": "joe", "payload": [1, 2, "foo"] }

6.5 get_channel_info

Returns all settings and attributes of a channel.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/get_channel_info?security_token=yo&channel_name=testing

Server Replies:

[
true,
{

"name": "testing",
"options": {

"anonymous": false,
"history": [

[
"SUBSCRIBE",
{

"user": "mcarter"
}

],
[

"PUBLISH",
{

"payload": "good day",
"user": "mcarter"

}
],
[

"PUBLISH",

6.5. get_channel_info 21

hookbox Documentation, Release 0.3.4

{
"payload": "was gibt es?",
"user": "mcarter"

}
]

],
"history_duration": 0,
"history_size": 5,
"moderated": false,
"moderated_publish": true,
"moderated_subscribe": true,
"moderated_unsubscribe": true,
"polling": {

"form": {},
"interval": 5,
"mode": "",
"originator": "",
"url": ""

},
"presenceful": true,
"reflective": true

},
"subscribers": [

"mcarter"
]

}
]

6.6 set_channel_options

Set the options on a channel.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

Optional Form Variables:

• anonymous: json boolean

• history: json list in the proper history format

• history_duration: json integer

• history_size: json integer

• moderated: json boolean

• moderated_publish: json boolean

• moderated_subscribe: json boolean

• moderated_unsubscribe: json boolean

• polling: json object in the proper polling format

• presenceful: json boolean

• reflective: json boolean

22 Chapter 6. Web/HTTP Interface

hookbox Documentation, Release 0.3.4

• state: json object

Example:

Client Requests URL:

/web/set_channel_options?security_token=yo&channel_name=testing&history_size=2&presenceful=true

Server Replies:

[true, {}]

The history_size of the channel is now 2, and presenceful is false.

6.7 create_channel

TODO

6.8 destroy_channel

TODO

6.9 state_set_key

Sets a key in a channel’s state object. If the key already exists it is replaced, and if not it is created.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

Optional Form Variables:

• key: The target key in the state

• val: any valid json structure; it will be the new value of the given key on the state

Example:

Client Requests URL:

/web/state_set_key?security_token=yo&channel_name=testing&key=score&val={ "mcarter": 5, "desmaj": 11 }

Server Replies:

[true, {}]

The state of the channel now contains the key “testing” with the value { “mcarter”: 5, “desmaj”: 11 }. An onState
javascript callback will be issued to all subscribers; They will be able to access subscription.state.score.mcarter and
will see the value 5.

6.7. create_channel 23

hookbox Documentation, Release 0.3.4

6.10 state_delete_key

Removes a key from the state of a channel. If the key doesn’t exist then nothing happens.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• channel_name: The target channel.

Optional Form Variables:

• key: The target key in the state to delete

Example:

Client Requests URL:

/web/state_delete_key?security_token=yo&channel_name=testing&key=score

Server Replies:

[true, {}]

The state of the channel no longer contains the key “score”. An onState callback will be issued to all subscribers.

6.11 set_config

Update certain configuration parameters (mostly webhook related options) immediately without restarting hookbox.

Required Form variables:

• security_token: The password specified in the config as -r or --api-security-token.

Optional Form Variables:

• cbhost: json string

• cbport: json integer

• cbpath: json string

• cb_connect: json string

• cb_disconnect: json string

• cb_create_channel: json string

• cb_destroy_channel: json string

• cb_subscribe: json string

• cb_unsubscribe: json string

• cb_publish: json string

• cb_single_url: json string

• admin_password: json string

• webhook_secret: json string

• api_security_token: json string

24 Chapter 6. Web/HTTP Interface

hookbox Documentation, Release 0.3.4

Example:

Client Requests URL:

/web/state_delete_key?security_token=yo&cbhost="1.2.3.4&cbport=80

Server Replies:

[true, {}]

The callback host is now set to 1.2.3.4 and the port is now 80.

6.12 get_user_info

Returns all settings and attributes of a user.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

• user_name: The target user.

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/get_user_info?security_token=yo&user_name=mcarter

Server Replies:

[
true,
{

"channels": [
"testing"

],
"connections": [

"467412414c294f1a9d1759ace01455d9"
],
"name": "mcarter",
"options": {

"reflective": true,
"moderated_message": true,
"per_connection_subscriptions": false

}
}

]

6.13 set_user_options

Set the options for a user.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

6.12. get_user_info 25

hookbox Documentation, Release 0.3.4

• user_name: The target user.

Optional Form Variables:

• reflective: json boolean - if true, private messages sent by this user will also be sent back to the user

• moderated_message: json boolean - if true, private messages sent by this user will call the message web-
hook

• per_connection_subscriptions: json boolean - if true, only the user connection (or connections) that
sends a subscribe frame will be subscribed to the specified channel. Otherwise, all of a user’s connections will
share channel subscriptions established by any of the connections.

Example:

Client Requests URL:

/web/set_user_options?security_token=yo&user_name=mcarter&reflective=false

Server Replies:

[true, {}]

The reflective of the user is now false.

6.14 get_server_info

Returns all current users and connections of the server.

Required Form Variables:

• security_token: The password specified in the config as -r or --api-security-token.

Returns json:

[success (boolean) , details (object)]

Example:

Client Requests URL:

/web/get_server_info?security_token=yo

Server Replies:

[
true,
{

"channels": [
"testing",
"testing2"

],
"connections": [

"467412414c294f1a9d1759ace01455d9",
"759ace01455d9467412414c294f1a9d1",
"14c294f1a9d1759ace01455d94674124"

]
}

]

26 Chapter 6. Web/HTTP Interface

CHAPTER

SEVEN

JSON REST INTERFACE

TODO

27

hookbox Documentation, Release 0.3.4

28 Chapter 7. JSON Rest Interface

CHAPTER

EIGHT

CONFIGURATION

As of version 0.2, hookbox is completely configurable via command line options. While developing your application,
you will want to create a startup script that contains all of the appropriate settings.

A typical hookbox start command looks like this:

hookbox -a myadminpassword -r myapitoken -s mycallbacksecret

8.1 Basic Options

8.1.1 Port (-p, –port)

The port hookbox binds to is specified by -p PORT or –port=PORT; the default is 8001.

8.1.2 Interface (-i, –interface)

The interface hookbox binds to is specified by -i INTERFACE or –interface=INTERFACE; the default is “0.0.0.0”

8.2 Webhook Callback Options

8.2.1 Callback Port (–cbport)

The port of the web application which will handle webhook callbacks is specified by –cbport=PORT; the default is 80.

8.2.2 Callback Hostname (–cbhost)

The hostname of the web application which will handle webhook callbacks is specified by –cbhost=HOSTNAME; the
default is “localhost”.

8.2.3 Callback Path Prefix (–cbpath)

All callbacks will be prefixed with the value specified by –cbpath=PATH_PREFIX; the default is “/hookbox”.

29

hookbox Documentation, Release 0.3.4

8.2.4 Callback Secret Token (-s, –webhook-secret)

If a secret token is provided, all callbacks with include that token value as the form variable “secret”; this is use-
ful for blocking unauthorized requests to the callback urls. The secret is specified by -s SECRET or –webhook-
secret=SECRET; the default is null (no secret.)

8.2.5 Callback Hookbox Version (–cbsendhookboxversion)

Send hookbox version info to webhook callbacks using X-Hookbox-Version header.

8.2.6 Callback via Https (–cbhttps)

Use https (instead of http) to make callbacks.

8.2.7 Callback Add Trailing slash (–cbtrailingslash)

Append a trailing slash to the callback URL if there is none.

8.3 Extended Callback Options

These options are typically left as default, except in cases where its helpful to point all callbacks at a single url, for
instance a single PHP script.

8.3.1 Connect Callback Path (–cb-connect)

The subpath for the connect callback is specified by –cb-connect PATH; the default is “connect”

8.3.2 Disconnect Callback Path (–cb-disconnect)

The subpath for the connect callback is specified by –cb-disconnect PATH; the default is “disconnect”

8.3.3 Create Channel Callback Path (–cb-create_channel)

The subpath for the create_channel callback is specified by –cb-create_channel PATH; the default is “create_channel”

8.3.4 Destroy Channel Callback Path (–cb-destroy_channel)

The subpath for the destroy_channel callback is specified by –cb-destroy_channel PATH; the default is “de-
stroy_channel”

8.3.5 Subscribe Callback Path (–cb-subscribe)

The subpath for the subscribe callback is specified by –cb-subscribe PATH; the default is “subscribe”

30 Chapter 8. Configuration

hookbox Documentation, Release 0.3.4

8.3.6 Unsubscribe Callback Path (–cb-unsubscribe)

The subpath for the unsubscribe callback is specified by –cb-unsubscribe PATH; the default is “unsubscribe”

8.3.7 Publish Callback Path (–cb-publish)

The subpath for the publish callback is specified by –cb-publish PATH; the default is “publish”

8.3.8 Cookie Identifier (-c, –cookie-identifier)

Hookbox will include all user cookies in any user-triggered webhook callback. This option is purely an opti-
mization that will cause hookbox to include only the cookie specified by -c COOKIE_NAME or –cookie-identifier
COOKIE_NAME; the default is to include all cookies.

8.4 API Options

8.4.1 Web API Port (-w, –web-api-port)

Optionally bind web api listening socket to a different port, (default:none)

8.4.2 Web API Interface (-W, –web-api-interface)

Optionally bind web api listening socket to a different interface, (default: none)

8.4.3 API Secret (-r, –api-security-token)

The external api interfaces are disabled by default and will only be enabled if an API secret is specified by -r SECRET
or –api-security-token SECRET. The value specified must appear in the form as the value for the key “secret” when
using the Web/HTTP Hookbox API.

8.5 Admin Options

8.5.1 Admin Password (-a, –admin-password)

Hookbox includes an admin console which can be found at the /admin relative url. (e.g. http://localhost:8001/admin)
This console is disabled by default unless an admin password is specified by -a PASSWORD or –admin-password
PASSWORD

8.4. API Options 31

http://localhost:8001/admin

hookbox Documentation, Release 0.3.4

32 Chapter 8. Configuration

CHAPTER

NINE

DEPLOYMENT

33

	Introduction
	Overview
	Terminology
	Common Patterns
	Installation
	Github

	Tutorial
	Channels
	Overview
	Getting Data out of a Channel
	Putting Data into Channels
	Channel Properties

	Javascript API
	Connecting
	Disconnecting
	Subscribing to Channels
	Interacting with Channels

	Webhooks
	publish
	message

	Web/HTTP Interface
	publish
	subscribe
	unsubscribe
	message
	get_channel_info
	set_channel_options
	create_channel
	destroy_channel
	state_set_key
	state_delete_key
	set_config
	get_user_info
	set_user_options
	get_server_info

	JSON Rest Interface
	Configuration
	Basic Options
	Webhook Callback Options
	Extended Callback Options
	API Options
	Admin Options

	Deployment

